
1

An Active Brake
Light Check Control

John Firestone
22 June 2008

Copyright © 2007–2008 by John Firestone

2

ABSTRACT

INTRODUCTION

Automotive brake light failures have been a prob-
lem ever since yellow brake lights were intro-
duced in 19152. A series of voluntary, road side
checks across the United States in 2005 found
13% of the inspected vehicles had faults in one
or more brake lights3. As a keen student of auto-
motive failure has observed4, having just one
brake light out can be just as bad as having no
brake lights at all: on many American cars they
double as turn signals. A single, bad brake light is
also sufficient cause for being stopped and con-
trolled by the police. Catching brake light fail-
ures – before they become a hazard or a nuisance
– is probably not such a bad idea.

The automakers have long recognized the fre-
quency and risks of faulty brake lights, and
thought of solutions, some of them quite inge-
nious. Ford, for example, first offered a fiber op-
tic tail light monitor on the 1968 Thunderbird
that transmitted light from the rear tail lights to
indicator jewels mounted on the rear parcel shelf.
The driver could check his tail lights in the rear

Automotive brake light failures are a widespread
nuisance and hazard, and brake lights can fail in
non-obvious ways. The automakers have long re-
alized this and offered systems to check the brake
lights, but not all and not on all models.

This project adds a brake light check control to
a car that did not come with one. The unit con-
tinuously monitors a set of incandescent brake
lights, the brake light switch and the brake light
fuse. Should any of these fail, it flashes an instru-
ment cluster check light with a code identifying
the failure. The unit actively tests the brake lights,
even when off, which as a boon, preheats their
filaments and increases the speed and reliability
of the brake light system.

The check control was designed for vehicles
with European-style, yellow, rear turn signals, but
may be adaptable to American cars that use the
rear turn signals as brake lights. At the flip of a
switch, the unit can accommodate and test a high

brake light flasher, a promising safety feature
Mercedes is adding to their cars1.

The heart of the check control is an Atmel
ATtiny13 microcontroller running at 128 khz that
is frugal enough to draw what little power it needs
off the check light it is driving. A multiplexed i/o
scheme protects the chip in a harsh, automotive
environment, compensates the inputs for 12V
supply variations and provides easy communica-
tion with the hardware – using a short list of func-
tion codes and no bit twiddling.

The check control’s C-language software was
made simple, to fit in 1 Kbyte of flash, and por-
table, to speed cross-development. A superloop
in main() runs an input – check – output cycle
roughly 90 times a second. Several simple but
fruitful expedients prevent “lamp sing” and al-
low the software to work with limited signals and
hardware.

THE READER may wish to print out pages 4, 5 and 11 for easy, later reference.

Fig. 1 A well-burnt brake light switch (photo-
graph by Randy Bernstein)

3

HARDWARE

The Brake Light Check Control system (BLCC)
consists of a small module placed between the
brake light switch and brake lights, and an incan-
descent, instrument cluster check light (Fig. 2).
The module has two independent sections:

• a brake light decoder/driver that draws
power from the brake light fuse and drives
the brake lights, as directed by the brake
light switch and the check control, and

• a check control section that monitors the
brake light power, switch, lights and de-
coder/driver, and lights the check light
should any of these fail.

The module can service a traditional, single-
section, high-current brake light switch (driving
just the BRAKE_SW signal in Figure 2) or a two
section switch with pairs of high- and low-cur-
rent contacts (driving both the BRAKE_SW and
TEST_SW signals). Some cars have and use the
second pair to disable a cruise control or to test
the switch. The decoder/driver uses it (if present)
to increase the brake light system’s reliability. The
switch in the author’s test vehicle has two pairs of
bifurcated contacts which act as a quadrifurcated
brake light switch when connected to the check
control system.

The decoder/driver can light all three brake

lights when the switch closes (high, left and right)
or it can drive just the lower two and allow an
optional controller (shown dashed) to light and
flash the high brake light – and confirm that it
does.

The module’s two sections are independently
powered and resistively coupled so that a power
failure in one does not take out the other. For
greater reliability, the check control section draws
what little power it needs from the instrument
cluster check lamp it is driving. As long as the
cluster has power and the lamp is intact, the sec-
tion should continue to function and warn about
any failures.

Figure 3 is a schematic of the check control
module. The dotted, horizontal line splits the up-
per decoder/driver section from the lower check
control section. The line passes through resistors
RN4A and RN4B which couple one section to the
other.

Pull up resistor R7 and pull down resistor R13,
at the middle left edge of the page, convert brake
light switch closures to active low and high, test
and brake switch signals. R13 draws a nominal,
12 ma “wetting current” through the high cur-
rent switch section to clean away any contact oxi-
dation. Resistor network RN5, to its right, and re-
sistors R8 and R6, below, pass the signals to the
two sections, and isolate one section from the
other.

view mirror and watch the car’s sequential turn
signals, which apparently was quite a treat5. More
recently, the automakers have offered electrically-
based systems that check the currents drawn by
the individual brake light filaments.

Having bulbs burn out is not the only way a
car’s brake lights can degrade or fail. A set of cold,
incandescent brake lights can have a combined
inrush current of more than 50A. Such high cur-
rents stress all parts of the brake light system and
cause sometimes, non-obvious failures. A search
with Google for the phrase “brake light recall”,
yielded almost 100 000 hits worth, affecting al-
most every make, from the brake light switch on
one end of the car to the tail light housings at the
other. Figure 1 shows one such failure common

to older BMW’s (including the author’s). Here,
the repeated inrush surges have eroded away the
more generously-sized, bifurcated contacts of an
improved switch, and caused it to fail.

Many such failures could be prevented by con-
verting a car to LED brake lights, but often that is
not practical or legal.

Despite its appeal and usefulness, most cars do
not have a system that checks the brake lights,
often because it was not offered. This project adds
one that continuously monitors the brake light
fuse, switch and lights, and flashes a warning
should any of them fail. Unlike many older de-
signs, this one actively monitors the brake lights,
which, as a boon, increases their life, speed and
reliability.

4

THE BRAKE LIGHT DECODER/DRIVER

RN5 divides and limits the 12V brake and test
switch signals to roughly 0–5V, for input to data
selector U6. U6’s 1Y and 3Y outputs go high when
either signal is active which turns on high side
drivers U1–U3 and the brake lights. Closing
switch SW1 disables output 3Y and the output to
the high brake light so that an external controller
may flash it. Output 4Y goes high whenever U6
drives the high brake light, and communicates
the switch setting, through RN4B, to the lower
check control section.

The lower check control raises U6’s G-strobe
input, through RN4A, when it wishes to light the
brake lights and measure their filament currents.
This disables U6’s active low outputs which go
high and turn on U1–U3 and all three brake
lights – even when SW1 is closed.

U6 is a piece of good, old, MSI ur-logic which
might seem out of place in an age of low-cost,
programmable parts. U6, however, does the job

Fig. 2 Block diagram of the check control module and brake light system

and is frugal, fast, robust, “uncrashable” and
100% bug free. The latter are good qualities for a
safety-related system.

Resistors RN4C and R2, to the right of U6, pro-
tect it against transients from U1–U3.

Brake light drivers U1–U3 are standard, auto-
motive, high side drivers that are protected
against short circuits, overheating, spikes, surges,
reverse battery connections and a few other elec-
trical hazards. The automakers buy such drivers
in huge numbers and the chipmakers churn them
out like water. Consequently, they are impres-
sively cheap for all that they do. These particular
parts are a little quirky and have been applied
following the manufacturer’s suggestions. (Devi-
ating from them didn’t help.)

U3 drives the high brake light through schottky
rectifier diode D1 so that the check control can
monitor an external brake light flasher (cf. top of
Fig. 2). The diode introduces a small voltage drop
which greatly reduces U3’s output current when
an external flasher drives the high brake light.

5

Fig. 3 Schematic of the Brake Light Check Control (BLCC) module

6

Each high side driver returns a small sense cur-
rent, IS, on pin 5 that is proportional to the cur-
rent into its load. The three sense currents from
U1–U3 pass leftward and downward to the lower
check control section which uses them to detect
faulty brake lights, and a faulty flasher.

Some of the surges and transients within a car’s
electrical system can be quite fierce. Each auto-
maker publishes an exacting list that the car’s elec-
tronics should survive6. The International Stan-
dards Organization (ISO) and American Society
of Automotive Engineers (SAE) have amalgam-
ated these lists into conducted immunity stan-
dards7,8 that have become increasingly popular.

Brake light drivers U1–U3 satisfy nearly all
parts of test level III of the ISO 7637 standard, a
high and quite demanding one, especially for af-
termarket electronics. It requires, among other
things, that it survive repeated, brief spikes of up
to ±90V and a one-time 80V, 280 ms surge. The
latter simulates a “load dump” which happens
when the battery is disconnected with the engine
and generator turning at high speed. Such a surge
has a great deal of energy and is beyond what the
drivers – or most of the electronics in a car – can
handle. Fortunately, nearly all the automakers
place a large, central suppressor across the gen-
erator outputs that clamps the surge to 40V or
less and dissipates most of the energy. (U1–U3
are rated to at least 60V.)

The CMOS decoder/driver logic uses very little
current. The simple and inexpensive, zener diode,
shunt regulator in the upper left corner supplies
U6 with filtered, 5V power. Zener diode D3 also
suppresses any automotive surges and transients
(to level III and beyond) that may enter the de-
coder/driver section through its supply or i/o
lines. The signal polarities of SW1 and outputs
2Y and 4Y are arranged to reduce the section’s
worst case current drain and, thus, the maximum
voltage drop from current limiting resistor R4.

THE CHECK CONTROL SECTION

The Atmel ATtiny13V microcontroller in the
lower middle-right of Figure 3 serves as the heart
of the check control. It monitors the decoder/
driver inputs and outputs, pulses the brake lights
to check them, and lights the check light when it

detects a fault. The rest of the section is designed
for and revolves around it – which should please
its maker. The section’s design tries to exploit its
strengths while respecting its limits.

The ‘tiny13 is “fused” to run off the same 128
khz oscillator that clocks its watchdog timer. This
reduces its power consumption to less than 1 mW
and allows it to run off its load, the check light.
The check light uses an extra-bright, 2W incan-
descent bulb with one side tied to 12V (cf. lower
right corner of Fig. 2). The ‘tiny13 grounds the
other side to light it (via low-side driver U7, lower
right corner of Fig. 3), but only 75% of the time.
This dims it to match the other, 1.2W instrument
cluster bulbs. The ‘tiny13 draws power to keep
running while the bulb is off, the other 25% of
the time, through the simple shunt regulator to
its right. Reserve capacitor, C3 supplies power
while the check light is on and smooths over
brief, power outages that might otherwise reset
the CPU. The ‘tiny13’s brownout level is fused at
1.8V to tolerate outages lasting hundreds of mil-
liseconds.

The check control has to monitor and control
some nine different inputs and outputs. Thus, it
may seem odd that it uses a chip with, at most,
six usable i/o pins. The check control uses a few
other parts rather than a larger AVR because of
the automotive surges and transients discussed
earlier. Atmel recommend no more than a milli-
amp into an i/o pin, but allow higher, short term
currents9. They do not characterize how much
higher, however10.

Rather than bet the design on a guessed, maxi-
mum, short term value, the check control adds
the robust, CMOS multiplexer, U4, in front of the
‘tiny13 and has U4 absorb the bulk of any surges
and transients. The ‘tiny13 outputs one of the
listed PORTB function values to read any of six
different signals that U4 selects and routes to pin
PB0. Intermediate resistor R11 insures that the
multiplexer takes the brunt of any overvoltage
and PB0 less than a milliamp, even if the latter’s
ESD protection diodes conduct first.

The ‘tiny13 can have U4 select:
• the decoder/driver logic, U6 (via RN4B),

to see if U6 is driving the high brake light,
• the brake lights switches (via R8 and R6),

to see if they are closed, and

7

• the brake light drivers, U1–U3 (via RN2),
to see if they or a high brake light flasher
are driving their brake lights.

The resistors protect U4 against transients that are
beyond the severe requirements of ISO-7637,
Level IV. The ‘tiny13 indirectly software-filters the
selected signals to eliminate parts.

It was not clear at the start just how many in-
structions it would need to read the signals. In-
deed, the author ran out of both cycles and flash
a couple times while developing its software. To
consume less of both, the ‘tiny13 uses its internal
analog comparator to compare the selected in-
put on pin PB0 against the divided brake light
circuit voltage on PB4. The comparator signals an
input is active when its attenuated signal on PB0
exceeds the nominal 0.74V on PB4.

RN1, at the lower left, sets or reduces the sig-
nals so that 0.74V appears on PB0 when they are
at roughly half their normal, active levels. The
voltage across RN1 should drop below 0.74V and
a lamp circuit declared inactive when the corre-
sponding load sense current returned by U1–U3
is less than 1.07A. At that current, a 32 MSCD
brake light is about as bright as a fully-on, 3
MSCD tail light.

The threshold voltage on PB4 tracks the brake
light supply voltage and drops, for example, while
the engine is cranking. This automatically adjusts
the active/inactive threshold for the switch inputs
and keeps it at roughly half the supply voltage as
the voltage changes. It somewhat overcompen-
sates the threshold for the brake light load sense
signals, however, since incandescent lamp cur-
rents vary sublinearly with the voltage. Since the
threshold voltage adjusts all the way down to 0V,
the ‘tiny13 measures and checks the brake light
voltage on PB4 with its A/D converter (ADC). For-
tuitously, the nominal 0.74V on PB4 is a good

fraction of the ADC’s, 1.1V internal bandgap ref-
erence; comparing PB4 against PB0 also selects
PB4 for the ADC.

Selecting any of the brake light drivers takes
PB3 high. This turns on all three drivers and brake
lights, through RN4A and U6, and lets the ‘tiny13
check them even when the operator is not brak-
ing. R12 and D6 (below the ‘tiny13) turn on U7
and the check light whenever the value 0x06 is
output to PORTB. This “Mickey-Mouse” output
decoding saves a little money and an i/o pin, but
may require extra, intermediate output values to
avoid glitching the check light.

Only occasionally, however. In return, R12, D6
and U4 create a function-code-driven, i/o inter-
face that provides simple communication with
the hardware. All output funnels through a single
port, PORTB, and all input appears in a single,
register bit, bit ACO from the analog compara-
tor. The check control software can manipulate
the outputs and test the inputs with just a few
simple macros and a short list of i/o function val-
ues.

By contrast, substituting a larger AVR chip and
connecting it more directly to the inputs would
require reading, writing and bit twiddling over
several different i/o ports. It would also require
much higher value, input resistors (100K vs. 10K)
to respect the maker’s recommendations and pro-
tect the chip against surges and transients. The
tenfold greater circuit impedance might signifi-
cantly reduce the noise immunity of the brake
light load sense signals when they are close to
the 0.74V active/inactive threshold.

Finally, RN3 to the left of R12 and D6, pulls
down and idles PORTB during power up and re-
set.

PRINTED CIRCUIT BOARD

The two check control prototypes were built with
double-sided circuit boards and well-established,
through-hole parts. The older technology did not
significantly increase the project’s total cost and
makes the boards serviceable with inexpensive
(non-SMT) equipment.

The circuit board in Figure 4 is a second spin

using fewer parts inside the same form factor.
Thus, it is generously sized. The board is mounted
vertically and oriented as it is in the car, with the
signal and power connector off to the right and
the BLCC acronym across the top. The compo-
nents are oriented and thermally zoned for bot-
tom to top, convective cooling. The heat generat-

8

Fig. 4 The air flow over the printed circuit board

Fig. 5 The printed circuit board layers

9

OPERATION & USER INTERFACE
The check control begins testing the brake light
system as soon as the driver turns on the igni-
tion. If his foot is on the brake as he does and the
brake lights are in order, the check control turns
on the instrument cluster check light to confirm
everything is working – including the light and
the brake light switch. Thereafter, the check con-
trol continuously tests the system and reports any
faults.

Up to 90 times a second, it samples the brake
light circuit voltage, the brake light switch, the
decoder/driver and the individual brake lights,
and checks for discrepancies. If any appear and
persist, it turns on and flashes the check light to
announce and repeatedly identify the fault(s).

For less serious faults (Table 1), it turns on the
check light, pauses and briefly dims it a certain
number of times to identify the fault. It repeat-
edly pauses and winks out the faults for roughly
two minutes and then turns off the check light so
as to not annoy the driver at night. If another less
serious fault appears, it turns on the light and
winks out the new fault(s) for two more minutes,
along with the earlier faults, as a helpful re-
minder.

The check control flashes the check light – fully

:ytluafaroF
kniw/miD

:thgilkcehceht

thgilekarbtfel emit1

thgilekarbhgih semit2

thgilekarbthgir semit3

hctiwsthgilekarb semit4

revird/redocedtuptuo semit5

rehsalflanretxe semit6

Table 1 The check light flash codes

on and off – 15 times if it detects a serious fault,
one that suggests the car has no effective brake
lights. It then winks out any Table 1 faults that
might apply, for two more minutes, to help pin-
point the problem. After 15 flashes and perhaps
2 minutes of winking, the check control dims the
check light and leaves it on until the driver
switches off the ignition – again, to not annoy
him at night, and to remind him that he can not
count on his brake lights.

A warning device must walk a fine line between
being overlooked and becoming a nuisance.

ing parts are largely along the top; the two most
heat sensitive components, C3 and C4, are at the
bottom. The heat generators are mounted on end,
for maximum cooling, and horizontally protrude
into the clear air next to the vertical circuit board.

The prototypes used a few parts the author had
on hand, including some that are more than suf-
ficient for the job. Consequently, none should ex-
perience more than a 10–20 ° C temperature rise
under normal conditions.

The heat generating parts could have been
placed and packed much more casually. The cir-
cuit board’s thermal design, however, should al-
low more aggressively rated, hotter running parts.
The prototypes’ 2W power resistors, for example,
could be shaved to 1W , to cut costs.

Figure 5 shows the board’s top and bottom lay-
ers. The red, top layer is largely used as a ground
plane, with a minimum of inner cuts. The layer’s
top quarter carries 12V power to the three high

side, brake light drivers. The power plane and
traces are quite wide, as part of a 15A fused cir-
cuit. While they should never have to carry a cur-
rent that blows the fuse, nevertheless, they should
be able to in case of a short. Likewise, not one but
two connector pins bring 12V power to the plane,
through separate, parallel wires from the fuse: to
split the current between the pins and increase
their short term, overload capacity.

The output traces from the three high side driv-
ers, in the upper half of the blue, bottom layer,
were made as wide as possible even though they
should be protected by the driver’s built-in cur-
rent limiting. The limiting should allow lighter
wiring and make downstream fuses redundant.
After some controller fires using similarly parts,
however, that may not be entirely true.

The wide, blue traces to schottky diode D1 (the
large pads just above the middle) also serve as
heat spreaders.

10

The ATtiny13 runs the C-language check control
program a nominal 90 times per second. This is
often enough to avoid lamp flicker yet infrequent
enough to allow a comfortable number of in-
structions per update cycle. Within each 90 hz
update cycle, the program reads the module’s in-
puts and outputs, checks them for faults and
pulses the instrument cluster check light. To save
power, the 1 Kbyte ‘tiny13 runs off its 128 khz
watchdog oscillator and idles when it has noth-
ing to do.

The ‘tiny13 can execute about 1400 instruc-
tions per update cycle and has fewer than 500 in-
structions in flash to do its job. This is not much.
The software was made conceptually and func-
tionally simple to stay within these limits, and to
allow cross-development. This proved to be a
good decision and made writing and testing the
software a fast, agreeable and almost hassle-free
project.

The software was kept portable and isolates
target-specific definitions and code in two files,
target.c and target.h. The software was first written
and debugged on PowerPC computers running
Mac OSX, with simple command line programs
replacing the hardware. The hardware-driver code
was then substituted and the result cross-com-
piled with avr-gcc 3.0.3 and 3.4.3, under both
OSX and Windows XP (as a test). The final bi-
nary was then downloaded with avrdude and
tested in the actual hardware.

THE 90 HZ UPDATE CYCLE

A superloop scheduler in main() divides the 90
hz update cycle into six, 12.5%, single timeslices
and a seventh, 25%, double timeslice. Figure 6
shows the tasks and principle data flow over a
cycle. Main() calls one or two functions at the
start of each timeslice, which return after consum-
ing most of their timeslice.

Main() starts an update cycle (at the top left)
by calling the test_flash() and init_hardware()
functions. These test the program flash and con-
figure the ATtiny13, respectively. On its very first
call, test_flash() performs a Cyclic Redundancy
Check on the entire flash and returns if it is cor-

rect (i.e. zero). If it isn’t, it spin blocks until the
watchdog times out and resets the controller. On
subsequent calls, test_flash() slowly recalculates
the flash’s CRC value, dividing one flash byte per
call, so that it continuously verifies the program
code every 512 calls. (It is called again, later in
the update cycle.)

Once per call, init_hardware() also reconfigures
the ‘tiny13 in case some spurious event clobbered
a control register. The common WindowsTM solu-
tion, cycling power to restart and restore, is not
really an option, especially while the vehicle is
moving.

Main() calls sample() and actually starts a new
input – check – output cycle at 75% into the up-
date cycle. Skipping to there, sample() triggers the
A/D converter and reads and writes i/o PORTB:
to measure the brake light voltage, sample the de-
coder/driver and start sampling the brake lights.

The brake light drivers, U1–U3, are really quite
slow; sample() may have to pulse them for over
300 µs before they fully turn on and return stable
filament currents. Sample() waits until the second
half of the double timeslice: to have more time
and to pulse the drivers and lights as quickly as
possible.

At 87.5% into the cycle, sample() pulses the
brake light drivers and checks their filament sense
currents. It checks them twice: before the drivers
have had a chance to respond, to see if the de-
coder/driver has already lit the brake lights, and
after, to confirm the brake lights took its sampling
pulse. This allows sample() to perform two checks
with a single PORTB function value and saves a
microcontroller i/o pin. Sample()’s long pulse also
heats the brake light filaments and makes them
glow very slightly. This preheating cuts their cold,
inrush current by more than a factor of three,
helps them light about 50 ms sooner and in-
creases their reliability and resistance to shock.

Sample() returns the unfiltered switch, light
and decoder/driver state in io_state, and main()
copies the measured brake light voltage into
bl_voltage. Although tempting, main() does not
call a function to filter these raw values: that
would be redundant. After check() (up next) in-
fers faults from them, the result must be filtered,

SOFTWARE

11

Fig. 6 The tasks and principle data flow over an update cycle

12

anyway, to ignore specious faults caused by input
timing skew. The program might as well filter just
once, and filter the result rather the input. The
result is what counts.

At 12.5% into the next update cycle, main()
calls the check() function with the io_state and the
brake light voltage, bl_voltage. Check() examines
both and returns a set of tentative faults. These
may be no more than switching transients, so at
25% into the cycle, main() calls the filter() func-
tion to time-filter them: over 32 update cycles, if
a fault is absent, or 64 cycles, if it is present.

The external brake light flasher in Figure 2 can
either steadily drive the high brake light or rap-
idly flash it. As check() can’t know which the
flasher is doing (that would need another input),
it assumes the flasher drives it steadily. To check(),
that makes the flasher appear faulty, during its
off cycle, whenever it is flashing. Filter() swallows
this apparent complication through the above ex-
pedient: it time-filters the faults over a couple
flash periods and counts the absence of a fault
twice as quickly as its appearance, over 32 cycles
rather than 64.

The 37.5% and 50% timeslices will be ex-
plained shortly.

At 62.5% into the update cycle, main() calls
the report() function with the now, time-filtered
faults. Report() notes any new ones and returns
as output – over many successive calls and update
cycles – a stream of PORTB function values that
flash the check light and report the faults.

All the check control input and output flows
through PORTB. Main() takes charge of the i/o

port a couple timeslices later, at the start of the
next update cycle (0% in). It writes out the latest
output value, which may or may not light the
check light, depending on what report() returned.
At 50% into the cycle, main() idles the outputs
and extinguishes the light if report() returned that
it should be only dimly on.

At 75% into the cycle, main() idles the outputs.
This extinguishes the check light if it was on, dims
it to match the other indicator lights and allows
the check control to draw power through the bulb
to continue running. After idling PORTB, main()
relinquishes it to the sample() function, so that it
can access the controller’s inputs and outputs for
the rest of the update cycle.

Main() very briefly pulses the check light at 0
and 50% into the update cycle whenever the
check light would otherwise be off, to preheat its
filament and increase its reliability.

The sample() function briefly pulses the brake
lights so that it can detect their filaments and tell
if one has gone out. The brief pulses can excite
resonances and make the filaments buzz. To re-
duce such “lamp sing”, init_hardware() programs
each timeslice to take slightly too long. Using the
stream of CRC remainder values calculated by
test_flash(), main() randomly shortens the fourth
timeslice that starts 37.5% into the update cycle.
This jitters the start of sample()’s timeslice, and
thus the start of its pulses, and reduces the brake
lights’ lamp sing. Main() runs the test_flash()
function a second time, at 50% into the update
cycle, to make the stream of crc_remainder values
more random.

“BUGS” & THE SOURCE CODE

The reader may consult the commented, C-lan-
guage source code for the complete details of the
check control software.

The reader should not be alarmed to see the
words BUG or BUGS while reading the source.
They really aren’t. The author follows the UNIX
tradition of prominently declaring as BUGS, the
limitations or assumptions made in a piece of
code to avoid some constraint. These should not
be actual bugs, or even inconsequential bugs,
rather, things that could become bugs and cause
grief if a later change violates a limitation or as-

sumption. To guard against that, the source code
checks many of its assumptions and limits at
compile time using the CONFIRM() macro de-
fined in the file common.h.

While he tries to avoid them, the author had
to resort to the very occasional hack for extreme
want of free cycles or words. All such instances
should be plainly marked HACK and checked
with CONFIRM() statements.

13

CLOCK MEASUREMENT & FIX

The ATtiny13’s 128 khz, watchdog oscillator is
about as stable as its internal, calibrated oscilla-
tor9, but is uncalibrated. Its frequency needs to
be measured before it can serve as the system
clock: to fix the number of system clock cycles
per timeslice. Each of the two check control mod-
ules was programmed assuming a 128 khz clock,
connected just to power through a check light
bulb, and allowed to flash and finally pulse width
modulate it with a 50% duty cycle. The resulting
pulses would repeat at 90 hz, once per update
cycle, if the watchdog oscillator ran at 128 khz.

A scopemeter was used to measure the actual
PWM frequency in the supply ripple across diode
D5 (lower right hand corner of Fig. 3). Here, D5’s
somewhat weak zener knee helpfully strengthens

Fig. 7 The second controller’s output and
update cycle frequency, after a clock fix

V31ynitTA
rotallicsogodhctaW

ycneuqerf

10 zh000311

20 zh005321

30 zh009121

40 zh007421

50 zh009311

Table 2 The calculated watchdog oscillator
frequencies for five ATtiny13 microcontrollers

the signal. The actual oscillator frequency was
then calculated from the ratio to 90 hz.

Table 2 gives the frequencies determined for
five different ATtiny13’s. Each controller was re-
programmed with its oscillator’s frequency and
then checked to see that its output (and update
cycle) repeat at 90 hz. Figure 7 shows the final
result for the second controller, as seen in the
ripple across D5.

INSTALLATION

Figure 8 shows the first installation of the brake
light check control in a BMW 3-series. The unit is
attached to the right rear wall with VelcroTM strips
for easy access and removal without tools. Ac-
cording to their datasheets, the strips should hold
three times the controller’s mass in a 100g for-
ward crash, after 1000 mate and unmate cycles.

The controller plugs into most of the car’s

brake light signals through a T-adapter inserted
between the tail light assembly and its plug. In
case of a serious malfunction, the adapter can be
unplugged and the car’s original brake lights re-
stored.

A second controller is now being installed and
tested in a Daimler/Chrysler Dodge Caravan with
independent brake and turn signal circuits.

ACKNOWLEDGMENTS
test the second controller. Arne Greindl and An-
drew Owen of Bobrink GmbH (Bremerhaven,
Germany) help find the missing part for the T-
adapter cable and provided further encourage-
ment during the check control’s development.

Randy Bernstein kindly provided the image for
Figure 1 which is reproduced with his permission.
James Karaganis made helpful suggestions that
improved the user interface. He also heroically
volunteered his Dodge minivan to receive and

14

Fig. 8 The first installation in a BMW 3-series

REFERENCES

(1) “Mercedes-Benz to adopt flashing brake lights”,
Canadian Driver, 1 March 2005, http://
www.canadiandriver.com/news/050301-1.htm

(2) “Exploring the Design and Implementation of
Networked Vehicular Systems”, Liviu Iftode,
Cristian Borcea, Nishkam Ravi, and Tamer
Nadeem, Rutgers Univ., Dept. of Computer
Science Technical Report, DCS-TR-585.

(3) http://www.carcare.org/NCCM/
National_Car_Care_Month.shtml.

(4) “What’s all this Dead Car Stuff, Anyway”,
Electronic Design, 6 February 1992.

(5) http://automotivemileposts.com/
thunderbird50.html.

(6) For example, General Motor’s Worldwide
Engineering Standard GMW3097, “General
Specification for Electrical for Electrical/Elec-
tronic Components and Subsystems, Electro-
magnetic Compatibility (EMC)”.

(7) International Standards Organization, ISO 7637-
1 (2002), “Road vehicles – Electrical distur-
bances from conduction and coupling – Part 1:

Definitions and general considerations”; ISO
7367-2 (2002), “Road vehicles – Electrical
disturbances from conduction and coupling –
Part 2: Electrical transient conduction along
supply lines only”; ISO 7367-3 (1995) “Road
vehicles – Electrical disturbance by conduction
and coupling – Part 3: Vehicles with nominal 12
V or 24 V supply voltage – Electrical transient
transmission by capacitive and inductive
coupling via lines other than supply lines”.

(8) Society of Automotive Engineers, J1113/
1_199507, “Electromagnetic Compatibility
Measurement Procedures and Limits for Vehicle
Components (except aircraft) 60 Hz to 18
GHz”; J1113/2_199609: “Electromagnetic
Compatibility Measurement Procedure for
Vehicle Components (except aircraft) Con-
ducted Immunity, 30 Hz to 250 kHz”.

(9) Atmel application note, AVR182: “Zero Cross
Detector”.

(10) Atmel datasheet, 2535E-AVR-10/04: “ATtiny13
Preliminary Complete”.

